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a b s t r a c t

The well-known nonlinear fifth-order model of a proton exchange membrane (PEM, also known as
polymer electrolyte membrane) fuel cell (PEMFC) appears to be pretty complex. In this paper, we
introduce the linearized model of the original nonlinear system and propose a sliding mode technique to
keep the pressures of hydrogen and oxygen at the desired values despite of changes of the fuel cell
current. Since the equilibrium point at steady state is unique, we perform Jacobian linearization of the
original model at steady state and find the state space matrices of the linearized system using the
MATLAB Symbolic Tool Box. The linearized system is asymptotically stable as well as controllable and
observable. In this paper we show that a sliding mode control technique copes very well with the fuel
cell external disturbance (changes of the fuel cell current) and produces excellent results for hydrogen
and oxygen required pressures.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Fuel cells are electrochemical energy devices that convert the
chemical energy, during a hydrogeneoxygen reaction, into elec-
tricity, heat, and water. As a renewable energy source, fuel cells are
one of the promising energy technologies with high efficiency and
low environmental impact. Proton exchange membrane fuel cells
are the most developed and popular type of fuel cells, using
hydrogen as the fuel. PEMFC represents a nonlinear, multiple-input
and multiple-output dynamic system [1].

Third-order models of PEMFC can be found in [2] (linear model)
[3] (bilinear model), and [4] (nonlinear model). Na and Gou have
derived a fifth-order nonlinear model [5] since Chiu et al. [4]
indicated a need for using higher-order dimensional models of
anode water (needed for membrane humidification) and cathode
nitrogen, see Fig. 1. A nonlinear ninth-order model of PEMFC was
derived in [6]. The model of [6] and its simplified fourth and sixth-
order variants were considered in [7,8].

In the last few years, several control strategies for PEMFC are
proposed. The sliding mode control technique that is robust against
disturbances has been recently considered in several papers [7e15].
A second-order sliding mode controller is designed for the
breathing subsystem of a PEMFC stack in [8], where the authors
: þ1 732 445 2820.
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have focused on elimination of the chattering phenomenon. The
model used in [8] is a nonlinearmodel of order six, which is derived
based on the work of Pukrushpan et al. [6], Talj et al. [7], have first
simplified and reduced the ninth-order model of [6] to a fourth-
order highly nonlinear model and experimentally justified such
a procedure. Then, they designed the corresponding sliding mode
controller using as the sliding variable the difference between the
actual and nominal angular air compressor speeds. The oxygen flow
problemwith real time implementation of a slidingmode controller
has been considered for the first-order model that is obtained from
the process input/output data in [12]. In [13], a hybrid controller
composed of an internal mode control based PID controller and an
adaptive sliding mode controller has been designed. The first
controller is used to control the hydrogen reformer and the second
controller is used to control the PEMFC model based on the work of
[2]. A sliding mode control scheme is proposed for the DC/DC buck
converter that guarantees a low and stable output voltage given
transient variations in the output voltage of a PEMFC in [14]. A fuzzy
sliding mode current controller of a hybrid fuel cell/energy-storage
systems is considered in [10]. Themethod is presented for designing
controllers for DC/DC and DC/AC converters. In [11], Hajizadeh and
his coworkers used the fuel cell model of [11] coupledwith a simple
second-order model for the hydrogen reformer and a linear super
capacitormodel to design a slidingmode controller for active power
under unbalanced voltage sag conditions. A sliding mode controller
of DC/DC converters for a simplified dynamic model for fuel cells is
used in [9]. Li et al. have presented a rapid-convergent slidingmode
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Fig. 1. Na and Gou 2008 model Schematic [5].
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controller for the temperature control system of PEMFC stack [15].
That paper did not consider the fuel cell connection to an electric
grid [9e11,14], but the model has included state variables that
represent the fuel cell temperature [15].

In this paper we propose a sliding mode controller design for
the fifth-order nonlinear model of PEMFC developed in [5], see
also Ref. [16]. The state variables in this model represent respec-
tively the pressures of hydrogen and water at the anode side and
the pressures of oxygen, nitrogen, and water at the cathode side,
that is

xðtÞ ¼ �
PH2

ðtÞ PH2OA
ðtÞ PO2

ðtÞ PN2
ðtÞ PH2OC

ðtÞ�T
¼ ½x1ðtÞ x2ðtÞ x3ðtÞ x4ðtÞ x5ðtÞ�T

(1)

The state space model is given by

_x1 ¼ RTlH2
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�
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_x4 ¼ RTlair
VC

�
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�
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�
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(2)

where R is the universal gas constant, T is temperature, VA, VC and
are anode and cathode volumes. C1, C2 are known constants [5,16],
4a, 4c are the relative humidity constants, Pys is the
saturation pressure, lH2

, lair and are stoichiometric constants,
YH2

¼ 0:99;YO2
¼ 0:21;YN2

¼ 0:79; are reactant fractions. I is the
cell current, and it is considered as a disturbance since it changes as
Vfc=RL, whereVfc is the produced fuel cell voltage andRL is the loadof
active users, which changes randomly. g is the coefficient measured
experimentally in [17] for the back-diffusion of water from the
cathode to the anodewhich is definedasH2Oback ¼ gH2Ombr where
H2Oback is the water back-diffusion flow rate and H2Ombr is the
membranewater inletflowrate [16]. In thismodel, it is assumed that
thewater in the system isperfectly controlled and theback-diffusion
is not considered which means g is zero.

The model output variables are defined by [5,16]

yðtÞ ¼
�
PH2

ðtÞ
PO2

ðtÞ
�
¼
�
x1ðtÞ
x3ðtÞ

�
(3)
The system control input is given by uðtÞ ¼ ½uaðtÞ ucðtÞ �T
where

uaðtÞ ¼ 1
ka

ðH2inðtÞ þ H2OAinðtÞÞ (4)

H2in (t) and H2OAin represent inlet flow rates of the anode side
hydrogen and water vapor with ka being a known constant, and

ucðtÞ ¼ 1
kc

ðO2inðtÞ þ N2inðtÞ þ H2OCinðtÞÞ (5)

O2in (t), N2in (t) and H2OCin (t) represent respectively inlet flow
rates of the cathode oxygen, nitrogen, and water with kc being
a known constant.
2. Linearization of PEM fuel cell dynamic model

Using MATLAB Symbolic Math Tool box, we obtain a unique
equilibrium point for the given system (2) as

x1 ¼ 411
412

4aPys; x2 ¼ 421
422

4aPys; x3 ¼ 431
432

4cPys;

x4 ¼ 441
442

4cPys; x5 ¼ 451
452

4cPys (6)

Functions 4ij are given in Appendix A.
Using the Jacobian linearization technique [18,19], the system

(2) can be linearized at the equilibrium point. The Jacobianmatrices
at the equilibrium point defined by x, u, and I, corresponding to
system (2), and represented in general as _x ¼ f ðx;u; IÞ, are

vf
vs

����
x¼x;u¼u;I¼I

;
vf
vu

����
x¼x;u¼u;I¼I

;
vf
vI

����
x¼x;u¼u;I¼I

(7)

where

xðtÞ ¼ xþ dxðtÞ
uðtÞ ¼ uþ duðtÞ
xðIÞ ¼ I þ dIðtÞ

(8)

The perturbations defined in (8) are assumed to be small [18,19].
The linearized system is defined by

_dxðtÞ ¼ AdxðtÞ þ BduðtÞ þ GdIðtÞ (9)

with the constant matrices given by

A ¼ vf
vx

����
x¼x;u¼u;I¼I

˛R5�5;

B ¼ vf
vu

����
x¼x;u¼u;I¼I

˛R5�2;

G ¼ vf
vI

����
x¼x;u¼u;I¼I

˛R5�1

(10)

It has been found that the matrix A is given by

A ¼ vf
vx

����
x¼x;u¼u;I¼I

¼
�

A1 02�3
03�2 A2

�����
x¼x;u¼u;I¼I

(11)

where

A1 ¼
�
a11 a12
a21 a22

�
; A2 ¼

2
4 a33 a34 a34
a43 a44 a43
a53 a53 a55

3
5 (12)

Elements aij are given in Appendix B.
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The matrix B is similarly obtained as

B ¼ vf
vu

����
x¼x;u¼u;I¼I

¼

2
66664
b11 0
b21 0
0 b32
0 b42
0 b52

3
77775 (13)

with elements bij given in Appendix C.
The matrix G is obtained as follows

G ¼ vf
vI

����
x¼x;u¼u;I¼I

¼

2
66664
g1
g2
g3
g4
g5

3
77775

¼

2
666666666664

RTC1
VA

�
x1

x1 þ x2
� 1

�
RTC1
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�
x2

x1 þ x2
� 1

�
RTC1
2VC

�
x3

x3 þ x4 þ x5
� 1

�
0
RTC1
VC

�
C2
C1

�
1� x5

x3 þ x4 þ x5

�
� 1� x5

x3 þ x4 þ x5

�

3
777777777775

(14)
3. Sliding mode controller design of the linearized PEM fuel
cell dynamic model

Sliding mode control is a form of variable structure control [20],
where sliding surfaces are designed such that systems trajectories
exhibit desirable properties. A system using sliding mode control
has been considered as a robust system, which yields to reduced
system sensitivity to uncertainties and exogenous disturbances.

Sliding mode control systems have been studied in different set-
ups by many researchers [20]. The controller is designed in two
steps e finding the sliding surface and reaching the sliding mode.
After finding sliding surfaces using the method of [20] for linear
systems or the Lyapunov method for nonlinear systems [21], the
design of slidingmode control is achieved as follows. Firstly, a sliding
surface is definedwhich ensures that the system remains on a hyper-
plane after reaching it from any initial condition in a finite time.
Secondly, discontinuous control is designed to render a slidingmode.
Approaches [20e23] can be used for continuous-time sliding mode
control which has been recognized as a robust control approach,
which yields to reject matched disturbances and system uncer-
tainties. The matching condition [22], provided the control input
makes the system asymptotically stable, assures robustness against
parametric uncertainties and exogenous disturbances.

In the following, we present some basic concepts of the sliding
mode control technique for linear systems such as the sliding
surface design, sliding mode control design, and the disturbance
rejection condition [23].

Consider a continuous-time linear system

_xðtÞ ¼ AxðtÞ þ BuðtÞ (15)

where x(t) ˛ Rn, u(t) ˛ Rm, and A, B are constant matrices of
appropriate dimensions, and B has full rank. There exists a simi-
larity transformation defined by [20]

qðtÞ ¼ HxðtÞ (16)

with

H ¼ ½N B �T (17)
and columns of the n� ðn�mÞmatrix N composed of basis vectors
in the null space of BT, which puts Equation (15) into the form

_qðtÞ ¼ AqðtÞ þ BuðtÞ (18)

with A ¼ HAH�1 and B ¼ HB ¼ ½ 0
Br

�. Equation (18) is decomposed
as follows

�
_q1ðtÞ
_q2ðtÞ

�
¼
�
A11 A12
A21 A22

��
q1ðtÞ
q2ðtÞ

�
þ
�
0
Br

�
uðtÞ (19)

where q1ðtÞ˛Rn�m, q2ðtÞ˛Rm, and Br is an m � m nonsingular
matrix.

Equation (19) yields

_q1ðtÞ ¼ A11q1ðtÞ þ A12q2ðtÞ (20)

and

_q2ðtÞ ¼ A21q1ðtÞ þ A22q2ðtÞ þ BruðtÞ (21)

q2(t) is treated as a control input to the system (20) and a state
feedback gain K, which makes the system asymptotically stable, is
defined by

q2ðtÞ ¼ �Kq1ðtÞ: (22)

For the system(20), Utkin andYounghave shown that ðA11;A12Þ is
controllable if and only if (A, B) is controllable [20], see also Ref. [24].

On the sliding surface, the system trajectory in the ðq1ðtÞ; q2ðtÞÞ
coordinates is expressed as

½K Im �
�
q1ðtÞ
q2ðtÞ

�
¼ 0 (23)

or

sðtÞ ¼ ½K Im �HxðtÞ ¼ GxðtÞ ¼ 0 (24)

in the original coordinates. Consider the same system as in (15)
with a disturbance d(t)

_xðtÞ ¼ AxðtÞ þ BuðtÞ þ EdðtÞ (25)

The sliding variable dynamics is given by (the sliding surface is
chosen as sðtÞ ¼ GxðtÞ)

_sðtÞ ¼ G _xðtÞ ¼ GAxðtÞ þ GBuðtÞ þ GEdðtÞ (26)

The control law which satisfies the reaching condition directly
can be chosen as

uðtÞ ¼ �ðGBÞ�1GAxðtÞ � ðGBÞ�1ðgþ sÞ
�

sðtÞ
ksðtÞk

�
(27)

where

g ¼ kGEkdmax (28)

The disturbance matching condition [22], is given by

rankð½B E �Þ ¼ rankð½B�Þ (29)

For the state space model (2), our objective is to keep yref in
a certain range, whichmeans to keep e ¼ y� yref around 0.We can
define a sliding surface as follows
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s ¼ y� yref (30)
which yields

_s ¼ _y� _yref ¼ _y ¼
�
_x1
_x3

�
(31)

The sliding mode control laws that satisfy s_s < 0 can be deter-
mined from Equations (32) and (33), will be presented in the next
section.

Several other more complicated techniques for designing sliding
surfaces and sliding mode controllers can be found in the engi-
neering literature, see for example Refs. [25e27]. However, they are
not needed for the purpose of this paper, since with the already
introduced two standard and simple sliding mode techniques we
get excellent results. As it will be shown in the simulation results,
the chattering phenomenon (the main problem in using sliding
mode control) will be fully suppressed and the abrupt changes of
the fuel cell current (disturbance in a pretty broad range of
80 Ae200 A) will have no impact on hydrogen and oxygen
pressures.
4. Linearized PEM fuel cell dynamic model

4.1. Model linearization

The numerical data taken from [5], used in this paper, are pre-
sented in Table 1.

With the realistic numerical data in Table 1, we have found that
the considered fuel cell system has a unique equilibrium point
(steady state point) given by

xðtÞ ¼ ½2:6509 0:0003 7:009 26:175 0:3390�T (32)
Table 1
Parameters of fuel cell.

Symbol Parameter Value [Unit]

R Gas constant 8.314 [J mol�1 K�1]
T Operating cell temperature 353 [K]
N Number of cells 35
VA Anode volume 0.005 [m3]
VC Cathode volume 0.010 [m3]
ka Anode conversion factor 7.034 � 10�4 [mol s�1]
kc Cathode conversion factor 7.036 � 10�4 [mol s�1]
A Fuel cell active area 232 � 10�4 [m2]
F Faraday constant 96,485 [A s mol�1]
Pys Saturation pressure 32 [kPa]
YO2

O2 reactant factor 0.2095
YN2

N2 reactant factor 0.7808
YH2

H2 reactant factor 0.9999
C1 N$A=2F 4.21 � 10�6 [m2 mol A�1 s�1]
C2 1:2684N$A=F 1.07 � 10�5 [m2 mol A�1 s�1]
lH2

H2 stoichiometric constant 2
lair Air stoichiometric constant 2.5
4a Anode humidity constant 0.8
4c Cathode humidity constant 0.9
H2in H2 inlet flow rate 0.0611 [m3 s�1]
H2OAin H2O inlet flow rate (Anode) 0.0019 [m3 s�1]
O2in O2 inlet flow rate 4.5403 [m3 s�1]
N2in N2 inlet flow rate 0.1503 [m3 s�1]
H2OCin H2O inlet flow rate (Cathode) 0.0019 [m3 s�1]
I Cell current density 100 [A m�2]
The corresponding linearized system is

_dxðtÞ¼

2
6666664

�8:741�10�7 0:00782 0 0 0
�0:00102 �0:00884 0 0 0

0 0 �0:02767 0:00732 0:00732
0 0 0:02733 �0:00767 0:02733
0 0 0:00005 0:00005 �0:03508

3
7777775

�dxðtÞ

þ

2
6666664

9:5846�10�8 0
8:5750�10�4 0

0 2:0935�10�6

0 2:9127�10�3

0 �6:3572�10�6

3
7777775
duðtÞ

þ

2
6666664

2:7255�10�9

�2:4384�10�5

�9:6493�10�6

0
8:1233�10�5

3
7777775
dIðtÞ¼AdxðtÞþBduðtÞþGdIðtÞ

(33)

By examining the eigenvalues of thematrix Awe found that all of
them are in the left half complex plane, so that this system is open-
loop asymptotically stable. The output equation according to Equa-
tion (3) has been already defined in the linear form in [5] and [16] as

yðtÞ ¼ CxðtÞ (34)

with

C ¼
�
1 0 0 0 0
0 0 1 0 0

�
(35)

Having obtained matrices A, B, and C, we can examine
the controllability and observability of the linearized system [28].
The controllability can be examined by studying the rank of the
controllability matrix defined by [28]

Co ¼
h
B AB A2B A3B A4B

i
(36)

It was found that the rank of the controllabilitymatrix is equal to
5, equal to the order of the system, n ¼ 5, and hence this system is
controllable. Inotherwords, control inputs exist that can transfer the
state of the systemfromany location in the state space to anydesired
location in the state space [28]. The systemobservability is tested by
examining the rank of the observability matrix defined by [28]

O ¼

2
66664

C
CA
CA2

CA3

CA4

3
77775 (37)

It was found that the rank of the observability matrix is equal to
5 (equal to the order of the system), and this system is also
observable [28].
4.2. Sliding mode controller design

The system in Equation (33) can be divided into two subsystems
as follow



Fig. 2. Pressure of hydrogen of the linearized system.

Fig. 3. Pressure of oxygen of the linearized system.
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"
_dx1ðtÞ
_dx2ðtÞ

#
¼
�
�8:741� 10�7 0:00782

�0:00102 �0:00884

��
dx1ðtÞ
dx2ðtÞ

�

þ
�
9:5846� 10�8

8:5750� 10�4

�
duaðtÞ

þ
�

2:7255� 10�9

�2:4384� 10�5

�
dIðtÞ

¼ A1dxðtÞ þ B1duðtÞ þ G1dIðtÞ (38)

2
64
_dx1ðtÞ
_dx2ðtÞ
_dx3ðtÞ

3
75 ¼

2
4�0:02767 0:00732 0:00732

0:02733 �0:00767 0:02733
0:00005 0:00005 �0:03508

3
5
2
4 dx3ðtÞdx4ðtÞ
dx5ðtÞ

3
5

þ
2
4 2:0935� 10�6

2:9127� 10�3

�6:3572� 10�6

3
5ducðtÞ

þ
2
4�9:6493� 10�6

0
8:1233� 10�5

3
5dIðtÞ

¼ A2dxðtÞ þ B2duðtÞ þ G2dIðtÞ
(39)

The objective is to keep the pressure differences of hydrogen
and oxygen in a certain range to protect themembrane damage.We
have designed the controller to keep both pressures around 3 atm.

For the first subsystem of Equation (38), there exists a non-
singular similarity transformation T1 [20], which yields�
_q1ðtÞ
_q2ðtÞ

�
¼
�
�1:6346� 10�6 �9:1207
8:7110� 10�7 �8:8370� 10�3

��
q1ðtÞ
q2ðtÞ

�

þ
�

0
7:3531� 10�7

�
ðuaðtÞ þ dIðtÞÞ

(40)

with d ¼ �2.8436 � 10�2. The disturbance can be nullified using
Drazenovic’s invariance condition since rank([B1 G1]) ¼ rank([B1])
[22,29].

The pair ðA111
;A112

Þ is controllable since the original system is
controllable [20]. Hence, we can find a state feedback gain matrix
K1 such that A111

� K1A112
is asymptotically stable.

On the sliding surface [20], the system trajectory in the (q1 (t), q2
(t)) coordinates is expressed as

½K1 1 �
�
q1ðtÞ
q2ðtÞ

�
¼ ½�0:5482 1 �

�
q1ðtÞ
q2ðtÞ

�
¼ 0 (41)

or

s1ðtÞ ¼ ½0:5482 1 �T1
�
x1ðtÞ
x2ðtÞ

�
¼ G1

�
x1ðtÞ
x2ðtÞ

�

¼ 0:5482x1ðtÞ þ 7:9622� 10�4x2ðtÞ ¼ 0

(42)

in the original coordinates.
Starting with _s1ðtÞ ¼ 0, we design the sliding mode control law

for the sliding surface (42)

_s1ðtÞ ¼ 0 ¼ G1

�
_x1
_x2

�
¼ G1A1

�
x1ðtÞ
x2ðtÞ

�
þ G1B1ðu1ðtÞ þ dIðtÞÞ

(43)

From Equation (43) and using the result of Equation (42), control
u1 (t) is obtained as
u1ðtÞ ¼ �ðG1B1Þ�1G1A1

�
x1ðtÞ
x2ðtÞ

�
� ðG1B1Þ�1ðg1 þ s1Þ

s1ðtÞ
ks1ðtÞk

(44)

where

g1 ¼ kG1B1kdImax (45)

is required to overcome the disturbance I (t) and s1 > 0 provides
that

s1ðtÞ_s1ðtÞ < 0 (46)

is satisfied.
The second subsystem (39) does not satisfy Drazenovic’s

invariance condition. Instead of using Utkin and Young’s method
[20], we define the sliding surface for the second subsystem as

s2ðtÞ ¼ y2ðtÞ � y2ref ðtÞ (47)



Fig. 4. Current changes.
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similar with themethod of Talj et al. [7]. Starting with _s2ðtÞ ¼ 0, we
design the sliding mode control law for the sliding surface defined
in Equation (47)

_s2ðtÞ ¼ 0 ¼ _y2ðtÞ ¼ _x3ðtÞ
¼ a33x3ðtÞ þ a34x4ðtÞ þ a34x5ðtÞ þ b32ucðtÞ þ g3IðtÞ (48)

From Equation (48), control u2(t) is obtained as

u2ðtÞ ¼ � 1
b32

ða33x3ðtÞ þ a34x4ðtÞ þ a34x5ðtÞ þ s2

þ jg3jImaxjs2ðtÞj (49)

where s2 > 0 is chosen to satisfy the condition

s2 _s2 < 0 (50)

Note that we can use the same procedure to find the sliding
surface and the controller for the subsystem 1.

The simulation results are presented in Figs. 2 and 3. The
disturbance current waveform is presented in Fig. 4.

In Fig. 2, the sliding mode control law is from Utkin and
Young’s method [20] and in Fig. 3, the control law is found by
using s ¼ y2 � y2ref. It can be noticed from Figs. 2 and 3 that the
pressures are kept around 3 atm after about 1 s despite the current
density changes during entire time internal of interest, from 0 to
5 s.

5. Conclusion

We have applied the sliding mode strategy for the linearized
model of the well-known nonlinear model of the proton exchange
membrane fuel cell obtained using the MATLAB Symbolic Tool Box.
For this well defined model, which has uniqueness of steady state
variables, asymptotic stability, controllability, and observability, the
sliding mode technique copes very well with the cell current
changes I(t), and keeps very precisely the pressures of hydrogen
and oxygen at the desired (required) values.
Appendix A

411 ¼ C2
1 I

2 � 2lH2
C1I
	
YH2

� 1


kaua þ l2H2

YH2

	
YH2

� 2


k2au

2
a

412 ¼ C2
1 I

2 � lH2
C1IYH2

kaua þ l2H2

	
YH2

� 1


k2au

2
a

421 ¼ lH2
C1I
	
YH2

� 1


kaua � l2H2

�
Y2
H2

� 3YH2
þ 2
�
k2au

2
a

422 ¼ C2
1 I

2 � lH2
C1IYH2

kaua þ l2H2

	
YH2

� 1


k2au

2
a

431 ¼ I2C2
1
	� C1 þ C2 þ ðC1 þ C2ÞYN2


þ lairI
2C1
	
3C1

� ðC1 þ 2C2ÞYN2


	� 4C2YO2
� 2ðC1 þ C2ÞYN2

YO2



kcuc

þ 2l2airI
�
2C1 � C1YN2

� 4C1YO2
þ 2ðC1 þ C2ÞY2

O2

þ ðC1 þ 2C2ÞYN2
YO2

�
k2c u

2
c þ 4l3air

	
YN2

þ YO2

� 2


YO2

k2c u
2
c YO2

432 ¼ I3C2
1
	� C1 þ C2 þ ðC1 þ C2ÞYN2


þ lairI
2C1
	

� 2ð3C1 � C2Þ þ ð3C1 þ 4C2ÞYN2
þ 2ðC1 þ C2ÞYO2



kcuc

þ 2l2airI
	
2C2YN2

þ ðC1 þ 2C2ÞYO2
� 3C1



k2c u

2
c þ 4l3air

	
YN2

þ YO2
� 1



k3c u

3
c

441 ¼ I2C1YN2

	ðC1 � C2Þ � ðC1 þ C2ÞYN2



þlairIYN2

	� 3C1 þ ðC1 þ 2C2ÞYN2


	
2ðC1 þ C2ÞYO2



kcuc

þ2l2air
	� 2þ YN2

þ YO2



YN2

k2c u
2
c

442 ¼ I2C1
	ðC1 � C2Þ � ðC1 þ C2ÞYN2


þ lairIYN2

	� 4C1
þ ðC1 þ 2C2ÞYN2


	
2ðC1 þ C2ÞYO2



kcuc

þ 2l2air
	� 1þ YN2

þ YO2



k2c u

2
c

451 ¼ I3C2
1YN2

	
C1 � C2 � ðC1 þ C2ÞYN2


þ lairI
2C1ðB1 þ B2 þ B3

þ B4Þkcuc � 2l2airIðB5 þ B6 þ B7Þk2c u2c � 4l3air
	
2þ YN2

þ YO2


	
1þ YN2

þ YO2



k3c u

3
c

B1 ¼ 2ðC1 � C2Þ � 7C1YN2
; B2 ¼ �2ðC1 � C2ÞYO2

B3 ¼ 4ðC1 þ C2ÞYN2
YO2

; B4 ¼ ð3C1 þ 4C2ÞY2
N2

B5 ¼ 3C1 þ 2ðC1 � C2ÞYN2
; B6 ¼ �ð5C1 þ 2C2ÞYO2

þ 2C2Y
2
N2

B7 ¼ 2ðC1 þ C2ÞY2
O2

þ 2ðC1 þ 2C2ÞYN2
YO2

452 ¼ I3C2
1
	� C1 þ C2 þ ðC1 þ C2ÞYN2


þ lairI
2C1
	

� 2ð3C1 � C2Þ þ ð3C1 þ 4C2ÞYN2
þ 2ðC1 þ C2ÞYO2



kcuc

þ 2l2airI
	
2C2YN2

þ ðC1 þ 2C2ÞYO2
� 3C1



k2c u

2
c þ 4l3air

	
YN2

þ YO2
� 1



k3c u

3
c



G. Park, Z. Gajic / Journal of Power Sources 212 (2012) 226e232232
Appendix B

a11 ¼ RT
V
	� lH2

kaua þ C1I

 x2

2

A ðx1 þ x2Þ

a12 ¼ RT
VA

	
lH2

kaua � C1I

 x1
ðx1 þ x2Þ2

a21 ¼ RT
VA

lH2

 
�4aPvs

ðx1 þ x2 � 4aPvsÞ2
þ x2
ðx1 þ x2Þ2

!
kaua

� RT
VA

 
C1I

x2
ðx1 þ x2Þ2

!

a22 ¼ RT
VA

lH2

 
�4aPvs

ðx1 þ x2 � 4aPvsÞ2
� x1
ðx1 þ x2Þ2

!
kaua

þ RT
VA

 
C1I

x1
ðx1 þ x2Þ2

!

a33 ¼ RT
VC

�
� lairkcuc �

C1
2
I
�

x4 þ x5
ðx3 þ x4 þ x5Þ2

a34 ¼ RT
VC

�
lairkcuc �

C1
2
I
�

x3
ðx3 þ x4 þ x5Þ2

a43 ¼ RT
VC

lairkcuc
x4

ðx3 þ x4 þ x5Þ2

a44 ¼ RT
VC

lairkcuc
x3 þ x5

ðx3 þ x4 þ x5Þ2

a53 ¼ RT
VC

lair

 
�4cPvs

ðx3 þ x4 þ x5 � 4cPvsÞ2
þ x5
ðx3 þ x4 þ x5Þ2

!
kcuc

þ RT
VC

ðC1 þ C2Þ I
x5

ðx3 þ x4 þ x5Þ2

a55 ¼ RT
VC

lair

 
�4cPvs

ðx3 þ x4 þ x5 � 4cPvsÞ2
� x3 þ x4
ðx3 þ x4 þ x5Þ2

!
kcuc

� RT
VC

ðC1 þ C2Þ I
x3 þ x4

ðx3 þ x4 þ x5Þ2
Appendix C

b11 ¼ RT
VA

lH2

�
YH2

� x1
x1 þ x2

�
ka

b21 ¼ RT
VA

lH2

�
4aPvs

x1 þ x2 � 4aPvs
� x2
x1 þ x2

�
ka

b32 ¼ RT
VC

lair

�
YO2

� x3
x3 þ x4 þ x5

�
kc

b42 ¼ RT
VC

lair

�
YN2

� x4
x3 þ x4 þ x5

�
kc

b52 ¼ RT
VC

lair

�
4cPvs

x3 þ x4 þ x5 � 4aPvs
� x5
x3 þ x4 þ x5

�
kc
References

[1] J. Larminie, A. Dicks, Fuel Cell Systems Explained, John Wiley & Sons, Chi-
chester, 2000.

[2] M.Y. El-Sharkh, A. Rahman, M.S. Alam, P.C. Byrne, A.A. Sakla, T. Thomas,
Journal of Power Sources 138 (2004) 199e204.

[3] R.S. Gemmen, Journal of Fluids Engineering 125 (3) (2003) 576e585.
[4] L.-Y. Chiu, B. Diong, R. Gemmen, IEEE Transactions on Industry Applications 40

(4) (2004) 970e977.
[5] W. Na, B. Gou, IEEE Transactions on Energy Conversion 23 (2008) 179e190.
[6] J.T. Pukrushpan, A.G. Stefanopoulou, H. Peng, Control of Fuel Cell Power

Systems, Springer, USA, 2004.
[7] R. Talj, D. Hissel, R. Ortega, M. Becherif, IEEE Transactions on Industrial Elec-

tronics 57 (2010) 1906e1913.
[8] C. Kunusch, P. Puleston, M. Mayosky, J. Riera, IEEE Transactions on Control

Systems Technology 17 (1) (2009) 167e174.
[9] F. Zenith, S. Skogestad, Journal of Process Control 17 (4) (2007) 333e347.

[10] A. Hajizadeh, M. Golkar, Expert Systems with Applications 37 (2010)
7627e7638.

[11] A. Hajizadeh, M. Golkar, A. Feliachi, IEEE Transaction on Energy Conversion 25
(2010) 1195e1208.

[12] W. Garcia-Gaban, F. Dorado, C. Bordons, Journal of Process Control 20 (2010)
325e336.

[13] G. Wang, Y. Wang, J. Shi, H. Shao, ISA Transactions 49 (2010) 87e94.
[14] J.-K. Kuo, C.-F. Wang, International Journal of Hydrogen Energy 36 (18) (2011)

11846e11855.
[15] X. Li, Z.-H. Deng, D. Wei, C.-S. Xu, G.-Y. Cao, Energy Conversion and

Management 52 (11) (2011) 3265e3274.
[16] B. Gou, W. Na, B. Diong, Fuel Cells: Modeling, Control, and Applications, CRC

Press/Taylor and Francis Group, Boca Raton, Florida, USA, 2010.
[17] F. Barbir, PEM Fuel Cells: Theory and Practice, Elsevier Academic Press, New

York, 2005.
[18] Z. Gajic, Linear Dynamic Systems and Signals, Prentice Hall, 2003.
[19] H. Khalil, Nonlinear Systems, Prentice Hall, 2002.
[20] V.I. Utkin, K.D. Young, Remote Control 39 (10) (1978) 1466e1470.
[21] W.-C. Su, S.V. Drakunov, Ü Özgüner, Automatica 32 (6) (1996) 925e928.
[22] B. Drazenovic, Automatica 5 (3) (1969) 287e295.
[23] A. Sinha, Linear Systems, CRC Press, Inc., Boca Raton, FL, USA, 2007.
[24] C.-T. Chen, Linear System Theory and Design, Oxford University Press, Inc.,

New York, NY, USA, 1999.
[25] S. Laghrouche, F. Plestan, A. Glumineau, Automatica 43 (3) (2007) 531e537.
[26] J.E. Slotine, W. Li, Applied Nonlinear Control, Prentice Hall, Englewood Cliffs,

New Jersey, 1991.
[27] V.I. Utkin, J. Guldner, J. Shi, Sliding Mode Control in Electromechanical

Systems, Taylor & Francis, London, 1999.
[28] Z. Gajic, M. Lelic, Modern Control Systems Engineering, Prentice Hall, 1996.
[29] W.-C. Su, International Journal of Control 72 (11) (1999) 990e995.


	Sliding mode control of a linearized polymer electrolyte membrane fuel cell model
	1. Introduction
	2. Linearization of PEM fuel cell dynamic model
	3. Sliding mode controller design of the linearized PEM fuel cell dynamic model
	4. Linearized PEM fuel cell dynamic model
	4.1. Model linearization
	4.2. Sliding mode controller design

	5. Conclusion
	Appendix A
	Appendix B
	Appendix C
	References


