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The well-known nonlinear fifth-order model of a proton exchange membrane (PEM, also known as
polymer electrolyte membrane) fuel cell (PEMFC) appears to be pretty complex. In this paper, we
introduce the linearized model of the original nonlinear system and propose a sliding mode technique to
keep the pressures of hydrogen and oxygen at the desired values despite of changes of the fuel cell
current. Since the equilibrium point at steady state is unique, we perform Jacobian linearization of the

original model at steady state and find the state space matrices of the linearized system using the
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MATLAB Symbolic Tool Box. The linearized system is asymptotically stable as well as controllable and
observable. In this paper we show that a sliding mode control technique copes very well with the fuel
cell external disturbance (changes of the fuel cell current) and produces excellent results for hydrogen
and oxygen required pressures.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Fuel cells are electrochemical energy devices that convert the
chemical energy, during a hydrogen—oxygen reaction, into elec-
tricity, heat, and water. As a renewable energy source, fuel cells are
one of the promising energy technologies with high efficiency and
low environmental impact. Proton exchange membrane fuel cells
are the most developed and popular type of fuel cells, using
hydrogen as the fuel. PEMFC represents a nonlinear, multiple-input
and multiple-output dynamic system [1].

Third-order models of PEMFC can be found in [2] (linear model)
[3] (bilinear model), and [4] (nonlinear model). Na and Gou have
derived a fifth-order nonlinear model [5] since Chiu et al. [4]
indicated a need for using higher-order dimensional models of
anode water (needed for membrane humidification) and cathode
nitrogen, see Fig. 1. A nonlinear ninth-order model of PEMFC was
derived in [6]. The model of [6] and its simplified fourth and sixth-
order variants were considered in [7,8].

In the last few years, several control strategies for PEMFC are
proposed. The sliding mode control technique that is robust against
disturbances has been recently considered in several papers [7—15].
A second-order sliding mode controller is designed for the
breathing subsystem of a PEMFC stack in [8], where the authors
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have focused on elimination of the chattering phenomenon. The
model used in [8] is a nonlinear model of order six, which is derived
based on the work of Pukrushpan et al. [6], Talj et al. [7], have first
simplified and reduced the ninth-order model of [6] to a fourth-
order highly nonlinear model and experimentally justified such
a procedure. Then, they designed the corresponding sliding mode
controller using as the sliding variable the difference between the
actual and nominal angular air compressor speeds. The oxygen flow
problem with real time implementation of a sliding mode controller
has been considered for the first-order model that is obtained from
the process input/output data in [12]. In [13], a hybrid controller
composed of an internal mode control based PID controller and an
adaptive sliding mode controller has been designed. The first
controller is used to control the hydrogen reformer and the second
controller is used to control the PEMFC model based on the work of
[2]. A sliding mode control scheme is proposed for the DC/DC buck
converter that guarantees a low and stable output voltage given
transient variations in the output voltage of a PEMFC in [14]. A fuzzy
sliding mode current controller of a hybrid fuel cell/energy-storage
systems is considered in [ 10]. The method is presented for designing
controllers for DC/DC and DC/AC converters. In [11], Hajizadeh and
his coworkers used the fuel cell model of [ 11] coupled with a simple
second-order model for the hydrogen reformer and a linear super
capacitor model to design a sliding mode controller for active power
under unbalanced voltage sag conditions. A sliding mode controller
of DC/DC converters for a simplified dynamic model for fuel cells is
used in [9]. Li et al. have presented a rapid-convergent sliding mode


Delta:1_PEM
Delta:1_given name
Delta:1_given name
Delta:1_surname
mailto:gunhyung.park@gmail.com
www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
http://dx.doi.org/10.1016/j.jpowsour.2012.04.014
http://dx.doi.org/10.1016/j.jpowsour.2012.04.014
http://dx.doi.org/10.1016/j.jpowsour.2012.04.014

G. Park, Z. Gajic / Journal of Power Sources 212 (2012) 226—232 227

H,+H,0 ==| Anode | Membrane  Cathode |[¢{—= N;+0,+H,0

Fig. 1. Na and Gou 2008 model Schematic [5].

controller for the temperature control system of PEMFC stack [15].
That paper did not consider the fuel cell connection to an electric
grid [9—11,14], but the model has included state variables that
represent the fuel cell temperature [15].

In this paper we propose a sliding mode controller design for
the fifth-order nonlinear model of PEMFC developed in [5], see
also Ref. [16]. The state variables in this model represent respec-
tively the pressures of hydrogen and water at the anode side and
the pressures of oxygen, nitrogen, and water at the cathode side,
that is

x(t) = [P,(6) Puo,(t) Po,(6) Pny(t) Phyoc(D)’ )
= [0 X(t) x3(6) xa(t) x5(0)]

The state space model is given by

RTG (1 — ) ( X1 >
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X3 = (YOZ X3 + X4 +X ) kette
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Xq4 = YN kcu
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(2)

where R is the universal gas constant, T is temperature, Vj, V¢ and
are anode and cathode volumes. C;, C; are known constants [5,16],
¢@a ¢c are the relative humidity constants, P, is the
saturation pressure, Ay,, Ay and are stoichiometric constants,
Yu, = 0.99,Yp, = 0.21,YyN, = 0.79, are reactant fractions. I is the
cell current, and it is considered as a disturbance since it changes as
Vi /RL, where Vi is the produced fuel cell voltage and Ry is the load of
active users, which changes randomly. v is the coefficient measured
experimentally in [17] for the back-diffusion of water from the
cathode to the anode whichis defined as HyOp,cc = YH2Oppr Where
HyOpack is the water back-diffusion flow rate and HyOmpy is the
membrane water inlet flow rate [16]. In this model, it is assumed that
the water in the system is perfectly controlled and the back-diffusion
is not considered which means 7 is zero.
The model output variables are defined by [5,16]

o = (R0 - [46] g

The system control input is given by u(t) = [ug(t) uc(t)]"
where

Ua(t) = 7 (Hain(0) + H0pin (1) )

Hain (t) and HyOajn represent inlet flow rates of the anode side
hydrogen and water vapor with k, being a known constant, and

Ue(t) = - (O3in(®) + Naia(6) + H>0cin(0) (5)

O2in (t), Naip (t) and HyOciy, (t) represent respectively inlet flow

rates of the cathode oxygen, nitrogen, and water with k. being
a known constant.

2. Linearization of PEM fuel cell dynamic model

Using MATLAB Symbolic Math Tool box, we obtain a unique
equilibrium point for the given system (2) as

X = %(Papv& X = %‘Papv& X3 = zﬂ(pcﬂ,s,
Xy = Zi(/’cpv& X5 = %@cﬂs (6)

Functions ¢;; are given in Appendix A.

Using the Jacobian linearization technique [18,19], the system
(2) can be linearized at the equilibrium point. The Jacobian matrices
at the equilibrium point defined by X, U, and I, corresponding to
system (2), and represented in general as x = f(x,u,I), are

o of o o
0S|y gu—mi—i MUlx—xu—zii=i O lx—gu—m—i
where

X(t) = X+ 0x(t)
u(t) = U+ ou(t) (8)
x(I) = T+ 6;(t)

The perturbations defined in (8) are assumed to be small [18,19].
The linearized system is defined by

Ox(t) = Adx(t) + Bdy(t) + Goy(t) (9)
with the constant matrices given by
Al R5*5
a;x x,u=u,l=I
0 5x2
B = — eR>*4, 10
| y_5 y—7i 11 (10)
G = o eR>"1
Ol |y gyt =i

It has been found that the matrix A is given by

— g — |: Al 02x3 } (1 1)
ox X=X,u=11,I=I 032 Ay X=X,u=1,I=I
where
a ap a33 0434 034
Al = { }, Ay = |as3 Qg4 g3 (12)
a1 A a a a
53 053 dss

Elements a;; are given in Appendix B.
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The matrix B is similarly obtained as

-¥ ~ |0 ba (13)
OU |y =1 )= 0 by

with elements bj; given in Appendix C.
The matrix G is obtained as follows

&1
) &2
X=x,u=u,I=I 24
&5
'RTC1 ( X1 > 7
sk Iy 1
Va \X1+X»
RTC, ( %, )
— (=——=-1
VA X1+ Xy
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2Ve \X3 + X4 + X
0
RTG (9 ( _ )_‘45) 1 X—S)
L Ve 1 X3+ X4+ X5 X3+X4+X5) J

(14)

3. Sliding mode controller design of the linearized PEM fuel
cell dynamic model

Sliding mode control is a form of variable structure control [20],
where sliding surfaces are designed such that systems trajectories
exhibit desirable properties. A system using sliding mode control
has been considered as a robust system, which yields to reduced
system sensitivity to uncertainties and exogenous disturbances.

Sliding mode control systems have been studied in different set-
ups by many researchers [20]. The controller is designed in two
steps — finding the sliding surface and reaching the sliding mode.
After finding sliding surfaces using the method of [20] for linear
systems or the Lyapunov method for nonlinear systems [21], the
design of sliding mode control is achieved as follows. Firstly, a sliding
surface is defined which ensures that the system remains on a hyper-
plane after reaching it from any initial condition in a finite time.
Secondly, discontinuous control is designed to render a sliding mode.
Approaches [20—23] can be used for continuous-time sliding mode
control which has been recognized as a robust control approach,
which yields to reject matched disturbances and system uncer-
tainties. The matching condition [22], provided the control input
makes the system asymptotically stable, assures robustness against
parametric uncertainties and exogenous disturbances.

In the following, we present some basic concepts of the sliding
mode control technique for linear systems such as the sliding
surface design, sliding mode control design, and the disturbance
rejection condition [23].

Consider a continuous-time linear system

x(t) = Ax(t) + Bu(t) (15)

where x(t) € R", u(t) e R™, and A, B are constant matrices of
appropriate dimensions, and B has full rank. There exists a simi-
larity transformation defined by [20]

q(t) = Hx(t) (16)
with
H=|[N Bl (17)

and columns of the n x (n — m) matrix N composed of basis vectors
in the null space of B, which puts Equation (15) into the form

q(t) = Aq(t) + Bu(t) (18)

withA = HAH 'andB = HB = [g ].Equation(ls)is decomposed
as follows ’

-l Bl o
Lh(f) An Axnlla0)| B © (19)
where q;(t)eR"™™™, g,(t)eR™, and B, is an m x m nonsingular

matrix.
Equation (19) yields

q1(t) = A11q1(t) + A12qa2(t) (20)
and
G2(t) = Ax1qq(t) + Axaqa(t) + Bru(t) (21)

qo(t) is treated as a control input to the system (20) and a state
feedback gain K, which makes the system asymptotically stable, is
defined by

q2(t) = —Kqq(t). (22)

For the system (20), Utkin and Young have shown that (A;1,A3) is
controllable if and only if (A, B) is controllable [20], see also Ref. [24].

On the sliding surface, the system trajectory in the (g (t), q2(t))
coordinates is expressed as

(K Im][gégg} ~0 (23)
or
s(t) = [K I HX(t) = Gx(t) = O (24)

in the original coordinates. Consider the same system as in (15)
with a disturbance d(t)

x(t) = Ax(t) + Bu(t) + Ed(t) (25)
The sliding variable dynamics is given by (the sliding surface is
chosen as s(t) = Gx(t))

5(t) = Gx(t) = GAX(t) + GBu(t) + GEd(t) (26)

The control law which satisfies the reaching condition directly
can be chosen as

u(t) = —(GB)’]GAX(t) - (GB)’l(v +0) (||§Eg|\) (27)
where
Y = ||GE||dmax (28)

The disturbance matching condition [22], is given by

rank([B E]) = rank([B]) (29)

For the state space model (2), our objective is to keep yref in
a certain range, which means to keep e = y — yf around 0. We can
define a sliding surface as follows
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S =Y = Vref (30)
which yields
S=Y Vet =Y = [X;:| (31)

The sliding mode control laws that satisfy s§ < 0 can be deter-
mined from Equations (32) and (33), will be presented in the next
section.

Several other more complicated techniques for designing sliding
surfaces and sliding mode controllers can be found in the engi-
neering literature, see for example Refs. [25—27]. However, they are
not needed for the purpose of this paper, since with the already
introduced two standard and simple sliding mode techniques we
get excellent results. As it will be shown in the simulation results,
the chattering phenomenon (the main problem in using sliding
mode control) will be fully suppressed and the abrupt changes of
the fuel cell current (disturbance in a pretty broad range of
80 A—200 A) will have no impact on hydrogen and oxygen
pressures.

4. Linearized PEM fuel cell dynamic model
4.1. Model linearization

The numerical data taken from [5], used in this paper, are pre-
sented in Table 1.

With the realistic numerical data in Table 1, we have found that
the considered fuel cell system has a unique equilibrium point
(steady state point) given by

X(t) = [2.6509 0.0003 7.009 26.175 O.3390}T (32)
Table 1
Parameters of fuel cell.
Symbol Parameter Value [Unit]
R Gas constant 8.314 [ mol~' K]
T Operating cell temperature 353 [K]
N Number of cells 35
Va Anode volume 0.005 [m?]
Ve Cathode volume 0.010 [m?]
Kkq Anode conversion factor 7.034 x 104 [mol s']
ke Cathode conversion factor 7.036 x 1074 [mol s ']
A Fuel cell active area 232 x 1074 [m?]
F Faraday constant 96,485 [A s mol ']
Pys Saturation pressure 32 [kPa]
Yo, 0, reactant factor 0.2095
Y, N, reactant factor 0.7808
Y, H, reactant factor 0.9999
G N-A/2F 421 x 1075 [m? mol A~ s71]
G 1.2684N-A/F 1.07 x 107> [m? mol A~ s 1]
2H, H, stoichiometric constant 2
Aair Air stoichiometric constant 2.5
Pq Anode humidity constant 0.8
@c Cathode humidity constant 0.9
Hain H, inlet flow rate 0.0611 [m?s~']
H20nin H,0 inlet flow rate (Anode) 0.0019 [m®s7 1]
Oain 0, inlet flow rate 4.5403 [m> s~ 1]
Nain N, inlet flow rate 0.1503 [m?s7']
H,O0cin H,0 inlet flow rate (Cathode) 0.0019 [m>®s™ 1]
I Cell current density 100 [A m 2]

The corresponding linearized system is

[—8.741x10~7 0.00782 0 0 0
—0.00102 -0.00884 0 0 0
ox(t)= 0 0 —0.02767 0.00732 0.00732
0 0 0.02733 —0.00767 0.02733
i 0 0 0.00005 0.00005 —0.03508
x0x(t)
[9.5846x 108 0
8.5750x10~4 0
+ 0 2.0935%x10°6 | du(t)
0 2.9127x1073
L 0 —6.3572x10°6
[ 2.7255x10°9°
—2.4384x103
+ [ —9.6493x 1076 | 6;(t) =Adx (£)+Boy (£)+G;(t)
0
| 8.1233x10°5

(33)

By examining the eigenvalues of the matrix A we found that all of
them are in the left half complex plane, so that this system is open-
loop asymptotically stable. The output equation according to Equa-
tion (3) has been already defined in the linear form in [5] and [16] as

y(t) = Cx(¢) (34)
with

10000
C:[oo1 00} (35)

Having obtained matrices A, B, and C, we can examine
the controllability and observability of the linearized system [28].
The controllability can be examined by studying the rank of the
controllability matrix defined by [28]

Co = [B AB A2B A3B A4B] (36)

It was found that the rank of the controllability matrix is equal to
5, equal to the order of the system, n = 5, and hence this system is
controllable. In other words, control inputs exist that can transfer the
state of the system from any location in the state space to any desired
location in the state space [28]. The system observability is tested by
examining the rank of the observability matrix defined by [28]

C
CA

0 = | CA? (37)
CA3
CcA4

It was found that the rank of the observability matrix is equal to
5 (equal to the order of the system), and this system is also
observable [28].

4.2. Sliding mode controller design

The system in Equation (33) can be divided into two subsystems
as follow
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—8.741 x 10”7
-0.00102

9.5846 x 108
+ {8.5750 x 1074] s (£)

2.7255 x 10~°
+ {—2.4384 x 10—5}5’ ®

= A10x(t) + B10u(t) + G10(t) (38)

“Soossa) [6u(0)

o (0) | _
G

3y, (8) ~0.02767 0.00732  0.00732 7 [y, (t)
b(t) | = | 002733  —0.00767 0.02733 | | bx,(t)
b () 0.00005  0.00005 —0.03508 | | dy, ()

2.0935 x 106
+ | 29127 x 1073 |0y (t)

—6.3572 x 106

—9.6493 x 10~©
+ 0 0r(t)

8.1233 x 10>
= Azéx(t) + Bzéu(t) + Gzél(f)
(39)

The objective is to keep the pressure differences of hydrogen
and oxygen in a certain range to protect the membrane damage. We
have designed the controller to keep both pressures around 3 atm.

For the first subsystem of Equation (38), there exists a non-
singular similarity transformation Ty [20], which yields

-9.1207 } {tﬁ(t)}

q.(t)] _ [-1.6346 x 106
~8.8370 x 1073 | | q2(b)

@) ] | 8.7110 x 107

+ {7.35310>< 10-7 |Wa(®) +dI(8))

(40)

with d = —2.8436 x 10~2. The disturbance can be nullified using
Drazenovic’s invariance condition since rank([B1 G1]) = rank([B1])
[22,29].

The pair (A,,,41,,) is controllable since the original system is
controllable [20]. Hence, we can find a state feedback gain matrix
Ki such that Ay, — K;A;,, is asymptotically stable.

On the sliding surface [20], the system trajectory in the (q (t), g2
(t)) coordinates is expressed as

(K 1}{2;8} — [~0.5482 1}[3%3} -0 (41)

or

st = (05482 117 | }10) ] = Gi[ (0

= 0.5482x1 (t) + 7.9622 x 10~ 4x,(t) = 0

(42)

in the original coordinates.
Starting with §;(t) = 0, we design the sliding mode control law
for the sliding surface (42)

5106 = 0 = G |51 | = Gum [ 310 | + Guy a6+ )

(43)

From Equation (43) and using the result of Equation (42), control
uq (t) is obtained as

The Pressure of Hydrogen

25

N

Pressure [atm]

15 2 25 3 35 4 45 5
Time [s]

Fig. 2. Pressure of hydrogen of the linearized system.

ui(t) = —(G1B1) 'GiAy [f(“} —(GiBy) (g +0y) SO

2(t) lIs1(O)1l
(44)
where
Y1 = IG1B1]|dImax (45)

is required to overcome the disturbance I (t) and o1 > O provides
that

s1()$1(t) <0 (46)

is satisfied.

The second subsystem (39) does not satisfy Drazenovic’s
invariance condition. Instead of using Utkin and Young’s method
[20], we define the sliding surface for the second subsystem as

S2(t) = Y2(t) — Yarer (L) (47)

The Pressure of Oxygen

Pressure [atm]

1 15 2 25 3 35 4 45 5
Time [s]

Fig. 3. Pressure of oxygen of the linearized system.
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Current
220 T
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180 F 9

160 B

I [A]
5

100 — 1

80 1

ED 1 1 1 1 1
0 0.5 1 15 2 25 3 35 4 45 5

Time [s]

Fig. 4. Current changes.

similar with the method of Talj et al. [7]. Starting with $,(t) = 0, we
design the sliding mode control law for the sliding surface defined
in Equation (47)

52(t) = 0 = y,(t) = x3(1)
a33X3(t) + a34X4(t) + azaXs(t) + baauc(t) + g3l(t)  (48)

From Equation (48), control uy(t) is obtained as

1
up(t) = sy (a33x3(t) + a3gXx4(t) + azaXs(t) + 02

+ 183/Imax|s2 (t)] (49)

where ¢, > 0 is chosen to satisfy the condition

52§2 <0 (50)

Note that we can use the same procedure to find the sliding
surface and the controller for the subsystem 1.

The simulation results are presented in Figs. 2 and 3. The
disturbance current waveform is presented in Fig. 4.

In Fig. 2, the sliding mode control law is from Utkin and
Young’s method [20] and in Fig. 3, the control law is found by
using s = y2 — Yaref. It can be noticed from Figs. 2 and 3 that the
pressures are kept around 3 atm after about 1 s despite the current
density changes during entire time internal of interest, from O to
5s.

5. Conclusion

We have applied the sliding mode strategy for the linearized
model of the well-known nonlinear model of the proton exchange
membrane fuel cell obtained using the MATLAB Symbolic Tool Box.
For this well defined model, which has uniqueness of steady state
variables, asymptotic stability, controllability, and observability, the
sliding mode technique copes very well with the cell current

changes I(t), and keeps very precisely the pressures of hydrogen
and oxygen at the desired (required) values.

Appendix A

011 = G — 23, Cil(Yn, — 1)katla + Afy, Y, (Y, — 2)K2u2

012 = CH? — Ay, CiIYy, kalia + A3, (Y, — 1)K2u2

P11 = /\H2C]I(YHZ — l)kaua — Aﬁz (be — 3Y]-[2 + 2) kﬁug

02 = G — Ay, CilYy,katla + A3y, (Yar, — 1)k2u2

931 = PCY (=G + G + (G + C)Yn,) + Aairl*C1 (3Cy
—(C1 + ZCZ)YNZ) ( — 4C2Y02 —2(C; + CZ)YNZ Yoz)’(cuc
+ 2050 (2C1 = Cr Yy, —4C1Yo, +2(Cr + G)Y3,
+ (C1 +2Cy)Yn, Yo, ) k2uZ + 423 (Yn, + Yo,
— 2)Yo,kZuZYo,
032 = PCH(— Gy + G+ (Cr + Co)Yx,) + Aair2Cr (
—2(3C; — Gy) + (3C; +4Cy)Yy, + 2(Cy + Co)Yo, kelie
+ 2051 (2C Yy, + (Cr +2Go)Yo, — 3Gy )K2u2 + 425 (Y,
+ Yo, — 1)k2u?

oa1 = PCYn, (G = G) = (G + ) Yy,)
+Xair1YN2 ( — 3C] —+ (C] —+ 2C2)YN2) (2(C] =+ Cz)YOZ)kCuC
+ngil‘( -2+ yNz + YOz)YNz kgug

012 = PG ((C1 — G) — (C1 + Co)Yn,) + Agiel Y, (— 4G
+ (C] —+ ZCZ)YNZ) (Z(C] + Cz)Yoz)kCuc
+ 225 (— 1+ Yy, + Yo, ) k2u2

951 = PCIYN, (C1 — G2 — (C1 + C)Y,) + Aairl*Ci (B1 + By + B
+ By)kcuc — 202,1(Bs + Bg + B7)k2u2 — 423,.(2 + Yy,
+ Yoz) (1 + YNz + Y02)k§ug
By = 2(C1 - G) —7GiYn,s By = —2(C — G)Yo,
By = 4(Ci + C)YN,Yo,; Ba = (3C1 +4Gy)YR,

Bs

3C1 +2(C1 — G)Yy,; Bg = —(5C; +2Gy)Yo, + 206, YE,
B; = 2(C; + G)Y3, +2(Cy +2Co)Yy, Yo,

P53 = I3C]2( — C] + Cz + (C] + CZ)YNZ) + Aairlzcl(
—2(3C1 — Gy) + (3C; +4Cy) Yy, + 2(Cy + Go)Yo, kel
+ 221(2G Yy, + (G +2Gy)Yo, — 3C1)k2u2 + 413 (Y,
+ Yo, — 1)k2u?
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Appendix B
RT %,
a; = A, Katlg + Cq
11 VA( H,Ral%a 1 ) %1 +?2)2
T o x
= — (A — -
ar VA( H, kalla — C11) Gt %)
0 - KT ( ~odPs B ) kol
V 2| = — 2 = . \2
A (X1 +X2 —90aPis)” (X1 +X2)
_RT ol—22
Va (%1 + Xz)
RT —@aPus X -
ay = oA, | —— - kqllg
Va ™" <(X1 1% — 9aPis)® (X1 + %)
LR I
A (X1 +%7)
RT < _ C1—) X4+ X5
33 = — | — Aypkctle —=1) —————2——
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